Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104951, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356716

RESUMO

The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.


Assuntos
Proteínas de Transporte , Proteínas Nucleares , RNA Polimerase I , Saccharomyces cerevisiae , Animais , Humanos , Camundongos , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
Mol Cell Biol ; 43(6): 269-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222571

RESUMO

Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.


Assuntos
RNA Polimerases Dirigidas por DNA , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/genética , Células Eucarióticas/metabolismo , RNA Polimerase III/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(38): e2205691119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095189

RESUMO

The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.


Assuntos
Histona-Lisina N-Metiltransferase , Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Nucleossomos , Ubiquitinação , Microscopia Crioeletrônica , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Nucleossomos/enzimologia , Ligação Proteica
4.
Dev Dyn ; 251(11): 1780-1797, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35656583

RESUMO

BACKGROUND: POLR1D is a subunit of RNA Polymerases I and III, which synthesize ribosomal RNAs. Dysregulation of these polymerases cause several types of diseases, including ribosomopathies. The craniofacial disorder Treacher Collins Syndrome (TCS) is a ribosomopathy caused by mutations in several subunits of RNA Polymerase I, including POLR1D. Here, we characterized the effect of a missense mutation in POLR1D and RNAi knockdown of POLR1D on Drosophila development. RESULTS: We found that a missense mutation in Drosophila POLR1D (G30R) reduced larval rRNA levels, slowed larval growth, and arrested larval development. Remarkably, the G30R substitution is at an orthologous glycine in POLR1D that is mutated in a TCS patient (G52E). We showed that the G52E mutation in human POLR1D, and the comparable substitution (G30E) in Drosophila POLR1D, reduced their ability to heterodimerize with POLR1C in vitro. We also found that POLR1D is required early in the development of Drosophila neural cells. Furthermore, an RNAi screen revealed that POLR1D is also required for development of non-neural Drosophila cells, suggesting the possibility of defects in other cell types. CONCLUSIONS: These results establish a role for POLR1D in Drosophila development, and present Drosophila as an attractive model to evaluate the molecular defects of TCS mutations in POLR1D.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Drosophila , Drosophila , Disostose Mandibulofacial , Animais , Humanos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/fisiologia , Drosophila/embriologia , Drosophila/genética , Disostose Mandibulofacial/genética , Mutação , Fosfoproteínas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia
5.
Biochem Soc Trans ; 48(5): 1917-1927, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32915199

RESUMO

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


Assuntos
RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Fatores de Transcrição TFII/química , Animais , Cromatina/metabolismo , Dimerização , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 5,8S/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
6.
Mol Cell Biol ; 40(13)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253346

RESUMO

Upstream activation factor (UAF) is a multifunctional transcription factor in Saccharomyces cerevisiae that plays dual roles in activating RNA polymerase I (Pol I) transcription and repression of Pol II. For Pol I, UAF binds to a specific upstream element in the ribosomal DNA (rDNA) promoter and interacts with two other Pol I initiation factors, the TATA-binding protein (TBP) and core factor (CF). We used an integrated combination of chemical cross-linking mass spectrometry (CXMS), molecular genetics, protein biochemistry, and structural modeling to understand the topological framework responsible for UAF complex formation. Here, we report the molecular topology of the UAF complex, describe new structural and functional domains that play roles in UAF complex integrity, assembly, and biological function, and provide roles for previously identified UAF domains that include the Rrn5 SANT and histone fold domains. We highlight the role of new domains in Uaf30 that include an N-terminal winged helix domain and a disordered tethering domain as well as a BORCS6-like domain found in Rrn9. Together, our results reveal a unique network of topological features that coalesce around a histone tetramer-like core to form the dual-function UAF complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Reagentes de Ligações Cruzadas/química , Proteínas de Ligação a DNA/química , Espectrometria de Massas , Modelos Moleculares , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Ativação Transcricional
7.
J Biol Chem ; 294(52): 19907-19922, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31727736

RESUMO

Our knowledge of the mechanism of rDNA transcription has benefited from the combined application of genetic and biochemical techniques in yeast. Nomura's laboratory (Nogi, Y., Vu, L., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 7026-7030 and Nogi, Y., Yano, R., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3962-3966) developed a system in yeast to identify genes essential for ribosome biogenesis. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in both the structures and components of the transcription apparatus and the patterns of regulation between mammals and yeast. Thus, there are significant deficits in our understanding of mammalian rDNA transcription. We have developed a system combining CRISPR/Cas9 and an auxin-inducible degron that enables combining a "genetics-like"approach with biochemistry to study mammalian rDNA transcription. We now show that the mammalian orthologue of yeast RPA49, PAF53, is required for rDNA transcription and mitotic growth. We have studied the domains of the protein required for activity. We have found that the C-terminal, DNA-binding domain (tandem-winged helix), the heterodimerization, and the linker domain were essential. Analysis of the linker identified a putative helix-turn-helix (HTH) DNA-binding domain. This HTH constitutes a second DNA-binding domain within PAF53. The HTH of the yeast and mammalian orthologues is essential for function. In summary, we show that an auxin-dependent degron system can be used to rapidly deplete nucleolar proteins in mammalian cells, that PAF53 is necessary for rDNA transcription and cell growth, and that all three PAF53 domains are necessary for its function.


Assuntos
Mitose , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , DNA Ribossômico/metabolismo , Dimerização , Sequências Hélice-Volta-Hélice , Ácidos Indolacéticos/metabolismo , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Guia de Cinetoplastídeos/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
8.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194408, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382053

RESUMO

In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.


Assuntos
DNA Ribossômico/genética , RNA Polimerase I/genética , Fatores de Transcrição/genética , Transcrição Gênica , Benzotiazóis/farmacologia , Sequência Conservada/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Naftiridinas/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Polimerase I/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química
9.
J Mol Biol ; 430(5): 641-654, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29357286

RESUMO

RNA polymerase I (Pol I) transcription in Saccharomyces cerevisiae requires four separate factors that recruit Pol I to the promoter to form a pre-initiation complex. Upstream Activating Factor (UAF) is one of two multi-subunit complexes that regulate pre-initiation complex formation by binding to the ribosomal DNA promoter and by stimulating recruitment of downstream Pol I factors. UAF is composed of Rrn9, Rrn5, Rrn10, Uaf30, and histones H3 and H4. We developed a recombinant Escherichia coli-based system to coexpress and purify transcriptionally active UAF complex and to investigate the importance of each subunit in complex formation. We found that no single subunit is required for UAF assembly, including histones H3 and H4. We also demonstrate that histone H3 is able to interact with each UAF-specific subunit, and show that there are at least two copies of histone H3 and one copy of H4 present in the complex. Together, our results provide a new model suggesting that UAF contains a hybrid H3-H4 tetramer-like subcomplex.


Assuntos
Histonas/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional
10.
Transcription ; 9(4): 255-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29264963

RESUMO

While structures of the RNA polymerase (Pol) II initiation complex have been resolved and extensively studied, the Pol I initiation complex remained elusive. Here, we review the recent structural analyses of the yeast Pol I transcription initiation complex that reveal several unique and unexpected Pol I-specific properties.


Assuntos
RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Iniciação da Transcrição Genética
11.
Hum Mol Genet ; 26(21): 4290-4300, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973381

RESUMO

Treacher Collins syndrome (TCS) is a craniofacial disorder that is characterized by the malformation of the facial bones. Mutations in three genes (TCOF1, POLR1C and POLR1D) involved in RNA polymerase I (Pol I) transcription account for more than 90% of disease cases. Two of these TCS-associated genes, POLR1C and POLR1D, encode for essential Pol I/III subunits that form a heterodimer necessary for Pol I/III assembly, and many TCS mutations lie along their evolutionarily conserved dimerization interface. Here we elucidate the molecular basis of TCS mutations in Saccharomyces cerevisiae, and present a new model for how TCS mutations may disrupt Pol I and III complex integrity.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/genética , RNA Polimerase III/genética , RNA Polimerase I/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Genes Reguladores , Humanos , Disostose Mandibulofacial/metabolismo , Mutação , RNA Polimerase I/metabolismo , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Elife ; 62017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623663

RESUMO

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


Assuntos
DNA Fúngico/ultraestrutura , Proteínas Pol1 do Complexo de Iniciação de Transcrição/ultraestrutura , RNA Polimerase I/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , DNA Fúngico/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Transcription ; 7(4): 133-40, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27223670

RESUMO

Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing.


Assuntos
Complexos Multiproteicos/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição TFII/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Biológicos , Modelos Moleculares , Família Multigênica , Filogenia , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/genética , Fatores de Elongação da Transcrição/química
14.
Nat Struct Mol Biol ; 21(9): 810-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25132180

RESUMO

Core Factor (CF) is a conserved RNA polymerase (Pol) I general transcription factor comprising Rrn6, Rrn11 and the TFIIB-related subunit Rrn7. CF binds TATA-binding protein (TBP), Pol I and the regulatory factors Rrn3 and upstream activation factor. We used chemical cross-linking-MS to determine the molecular architecture of CF and its interactions with TBP. The CF subunits assemble through an interconnected network of interactions between five structural domains that are conserved in orthologous subunits of the human Pol I factor SL1. We validated the cross-linking-derived model through a series of genetic and biochemical assays. Our combined results show the architecture of CF and the functions of the CF subunits in assembly of the complex. We extend these findings to model how CF assembles into the Pol I preinitiation complex, providing new insight into the roles of CF, TBP and Rrn3.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
15.
Gene ; 526(1): 30-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608173

RESUMO

Many gene families in higher plants have expanded in number, giving rise to diverse protein paralogs with specialized biochemical functions. For instance, plant general transcription factors such as TFIIB have expanded in number and in some cases perform specialized transcriptional functions in the plant cell. To date, no comprehensive genome-wide identification of the TFIIB gene family has been conducted in the plant kingdom. To determine the extent of TFIIB expansion in plants, I used the remote homology program HHPred to search for TFIIB homologs in the plant kingdom and performed a comprehensive analysis of eukaryotic TFIIB gene families. I discovered that higher plants encode more than 10 different TFIIB-like proteins. In particular, Arabidopsis thaliana encodes 14 different TFIIB-like proteins and predicted domain architectures of the newly identified TFIIB-like proteins revealed that they have unique modular domain structures that are divergent in sequence and size. Phylogenetic analysis of selected eukaryotic organisms showed that most life forms encode three major TFIIB subfamilies that include TFIIB, Brf, Rrn7/TAF1B/MEE12 subfamilies, while all plants and some algae species encode one or two additional TFIIB-related protein subfamilies. A subset of A. thaliana GTFs have also expanded in number, indicating that GTF diversification and expansion is a general phenomenon in higher plants. Together, these findings were used to generate a model for the evolutionary history of TFIIB-like proteins in eukaryotes.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/química , Plantas/classificação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Fator de Transcrição TFIIB/química , Transcriptoma
16.
Biochim Biophys Acta ; 1829(3-4): 265-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22960599

RESUMO

Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerase I/metabolismo , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Animais , Eucariotos/metabolismo , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase I/química , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIB/química
17.
Science ; 333(6049): 1637-40, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21921198

RESUMO

Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Dados de Sequência Molecular , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Transcrição Gênica
18.
Mol Cell Biol ; 31(4): 818-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21149579

RESUMO

The Tra1 protein is a direct transcription activator target that is essential for coactivator function of both the SAGA and NuA4 histone acetyltransferase (HAT) complexes. The ∼400-kDa Saccharomyces cerevisiae Tra1 polypeptide and its human counterpart TRRAP contain 67 or 68 tandem α-helical HEAT and TPR protein repeats that extend from the N terminus to the conserved yet catalytically inactive phosphatidylinositol 3-kinase (PI3K) domain. We generated a series of mutations spanning the length of the protein and assayed for defects in transcription, coactivator recruitment, and histone acetylation at SAGA- and NuA4-dependent genes. Inviable TRA1 mutants all showed defects in SAGA and NuA4 complex stability, suggesting that similar surfaces of Tra1 mediate assembly of these two very different coactivator complexes. Nearly all of the viable Tra1 mutants showed transcription defects that fell into one of three classes: (i) defective recruitment to promoters, (ii) reduced stability of the SAGA and NuA4 HAT modules, or (iii) normal recruitment of Tra1-associated subunits but reduced HAT activity in vivo. Our results show that Tra1 recruitment at Gcn4-dependent and Rap1-dependent promoters requires the same regions of Tra1 and that separate regions of Tra1 contribute to the HAT activity and stability of the SAGA and NuA4 HAT modules.


Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Genes Fúngicos , Histona Acetiltransferases/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia Estrutural de Proteína , Transativadores/genética , Ativação Transcricional
19.
Mol Cell Biol ; 30(10): 2376-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308326

RESUMO

Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Fúngica da Expressão Gênica , Complexo Mediador/química , Complexo Mediador/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
20.
J Struct Biol ; 170(2): 354-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060908

RESUMO

A simple and efficient protein sequence analysis strategy was developed to predict the number and location of structural repeats in the TOR protein. This strategy uses multiple HHpred alignments against proteins of known 3D structure to enable protein repeats referenced from the 3D structure to be traced back to the query protein sequence by using user-directed repeat assignments. The HHpred strategy performed with high sensitivity by predicting 100% of the repeat units within a test set of HEAT- and TPR-repeat-containing proteins of known three-dimensional structure. The HHpred strategy predicts that TOR contains 32 tandem HEAT repeats extending from the N-terminus to the FAT domain, which is itself comprised of 16 tandem TPR repeats. These findings were used to assemble a 3D atomic model for the TOR protein.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae , Análise de Sequência de Proteína/métodos , Algoritmos , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis , Biologia Computacional/métodos , Bases de Dados de Proteínas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...